Automated Semantic Analysis of Regulatory Texts

Overview

The extent and complexity of regulatory requirements pose significant challenges to banks already at their analysis. In addition, banks must – often ad-hoc – process inquiries of regulators and comment on consultation papers.
On the other hand, procedures from the areas NLP and Machine Learning enable the effective and efficient usage of available knowledge resources.

Our application Regulytics® enables the automated analysis of regulatory and internal texts in terms of content.
The app does not provide cumbersome general reports, but concise, tailored and immediate information about content-related similarities.
Thereby, regulatorily relevant texts can be classified into the overall context. Similar paragraphs in regulations and internal documents can be determined as well as differences in different document versions.
Financial service providers can request a free trial account for the online version of Regulytics.

Regulatory Challenges

Regulations like IFRS 9, BCBS 239, FTRB or IRRBB require fundamental changes of the banks’ methods, processes and/or systems.
Many regulations have far-reaching impacts on the risks, the equity capital and thereby the business model of the affected banks.
Also, the large amount of the final and consultative regulations renders a monitoring of the requirements and the effects difficult.

Regulations can generally affect different, interconnected areas of banks, like risk, treasury, finance oder IT.
In addition, there exist also connections between the regulations; gaps to to one requirement generally correspond to additional gaps to further requirements.
The diverse legislation in different jurisdictions increases the complexity once again.

Inside banks, several impact analyses and prestudies are conducted in order to classify the relevance of regulations.
Several consulting firms conduct prestudies as well as the actual implementation projects which are often characterized by large durations and high resource requirements .
Projects bind considerable internal resources and exacerbate bottle necks.
External support is expensive and increases the coordination efforts, especially in the case of several suppliers.
Errors in prestudies and project starting phases can be hardly corrected.
Due to the high complexity, there exists the risk that impacts and interdependencies are not recognized in time.

Available Knowledge Ressources

Original texts of the regulations and the consultation papers are normally freely available in the Internet and are – in the case of EU directives – present in several languages.
Regulators and committees provide further information, e.g. in form of circular letters and consultation papers.
Several institutes, portals, and consulting firms supply banks with partially free articles, white papers and news letters.

In addition, banks have collected extensive experiences due to already finalized or ongoing projects (project documentations, lessons learned).
Banks also have available documentations of the used methods, processes, and systems as well as the responsibilities and organizational circumstances.
Internal blogs, etc. focus the expertise of the employees.

Advantages of an Automated Analysis

Speed Increase

Automated analyses can be done per definition in a very fast and standardized way.
Even with usual laptops, semantic similarities of dozens regulations can be analyzed within minutes.
Thereby, responsibilities and impacts can be recognized – e.g. in the case of consultation papers – in time and included into statements.

Resource Conservation

Our solution runs without expensive hardware and software requirements.
The human effort for usage and eventual enhancements is extremely low and practically independent from the number of the considered regulations.
Bottlenecks are reduced and experts can focus on the demanding tasks.
Thus, project costs can be minimized.

Objectivity

The similarities between regulations on total and paragraph level are quantitatively available and at any time reproducible.
Discrepancies caused by subjective preferences can be practically ruled out.
Analyses can be documented in a comprehensible way.
Prestudy results and statements of external suppliers can be checked without bias.

Error Reduction

Automated analyses pose an efficient additional control.
Non-trivial – and potentially ignored – interdependencies between regulations can be identified and considered.
Especially clerical errors and the overlooking of potentially important paragraphs can be minimized.
Also, potentially ignored gaps and impacts can be detected.

Knowledge Usage via Topic Analysis

Methods and Tools

The methods of Natural Language Processing (NLP) enable a semantic analysis of texts on the basis of the topics contained therein for an identification of similarities at any required granularity.
In the here used method “Latent Semantic Analysis” (LSA or “Latent Sementic Indexing”, LSI), the considered terms are mapped onto a given number of topics; accordingly, texts are mapped onto a “semantic space”.
The topic determination is equivalent to an unsupervised learning process on the basis of the available documents.
New texts and text components can then be analyzed in terms of semantic similarities.
The analyzes require programs on the basis of appropriate languages, like e.g. Python or R.

Analysis

At first, the levels are determined by which the texts are to be analyzed (sentences, paragraphs, etc.).
Via a training text, a mapping onto a given number of topics is determined (”model”).
The texts to be analyzed are also mapped with the model and then quantitatively analyzed in terms of similarities.
As shown in the right sketch, the process can be automated and efficiently applied on a large number of texts.

Identification of similar paragraphs

Approach for an Analysis of Regulation-Related Texts

The approach for the analysis at total and paragraph level is determined by the bank’s goals.  We support you in detail questions and in the development of specific solutions.

Analysis of regulation-related texts

Usecases

In the following, three possible analyses of regulation texts are drafted which differ in their objective. The analyses can be easily conducted also with internal texts.

Use Case 1: Identification of Similarities

In the analysis, the regulation Basel II and the regulation Basel III: Finalising post-crisis reforms (often called “Basel IV”) were considered.
The general comparison already indicates a strong cosine similarity between the two texts (s. radar plot).
The matrix comparison over all paragraphs yields high similarities over wide areas (bright diagonal, s. matrix plot).
The analysis at paragraph level yields numerous nearly identical sections concerning credit risks (s. table).

Radar plot at total level
Similarity plot at paragraph level
Similar paragraphs

Use Case 2: Determination of Differences

A comparison between the German regulations MaRisk of the years 2017 and 2012 was conducted.
As already seen at the general level (s. radar plot) and in the matrix plot over all paragraphs (bright diagonal), the texts are nearly identical.
However, disruptions in the main diagonal (red arrow, matrix plot), indicate some changes.
A respective analysis over all paragraphs yields the section „AT 4.3.4“ (stemming from BCBS 239) as biggest novelty.

Radar diagram at total level
Similarity matrix at paragraph level
“Novel” paragraphs

Use Case 3: Finding Similar Paragraphs

The regulations Basel III: Finalising post-crisis reforms (“Basel IV”) and Basel III (BCBS 189) were considered.
Despite differences, an area of relatively high similarities can be recognized at paragraph level (red arrow, matrix plot).
For an analysis of this area, a respective paragraph from “Basel IV” was selected and the most similar paragraphs from Basel III to this paragraph were determined.
As shown in the table, the respective paragraphs from the texts refer to the Credit Value Adjustments (CVA).

Similarity matrix at paragraph level
Similar target paragraphs

Our Offer – On-Site Implementation

RiskDataScience enables banks to use and enhance the described procedures in an efficient and institute-specific way. According to the requirements, we propose the following three configuration levels.

Level 1: Methodology

  • Introduction into the Latent Semantic Indexing methodology with a focus on regulatory texts
  • Handover and installation of the existing Python solution for the automated loading and splitting of documents as well as the semantic analysis via LSI
  • Handover and documentation of the visualization and analysis methods

Bank has available enhanceable processes for the analysis of regulatory requirements.

Level 2: Customization

  • Step 1 and additional
  • Adaptations of analysis entities (e.g. document groups) according to the analysis goals of the bank
  • Analysis of the concrete regulations, projects, methods, processes, and systems for an identification of the optimal use possibilities
  • Development of processes for the achievement of the document goals
  • Documentation and communication of the results to all stakeholders

Bank has available customized processes for the analysis of regulatory requirements, e.g. in terms of responsibilities or methods.

Step 3: IT Solution

  • Step 1, Step 2 and additional
  • Specification of all requirements for a comprehensive IT solution
  • Proposal and contact of possible suppliers
  • Support in the supplier and tool selection
  • Support in the planning and implementation
  • Methodological and coordinative support during the implementation
  • Contact for methodological questions after the implementation

Bank has available an automated IT solution for an efficient semantic comparison of regulatorily relevant text components.

According to the customers’ requirements, a flexible arrangement is possible.

In addition, with our web app Regulytics® we offer a solution for an automated analysis of regulatory texts on total and paragraph level.

Contact

Dr. Dimitrios Geromichalos
Founder / CEO
RiskDataScience UG (haftungsbeschränkt)
Theresienhöhe 28, 80339 München
E-Mail: riskdatascience@web.de
Telefon: +4989244407277, Fax: +4989244407001
Twitter: @riskdatascience

Machine Learning-Based Classification of Market Phases

Introduction

The experience of the recent years as well as research results and regulatory requirements suggest the consideration of market regimes. Nevertheless, the largest part of today’s financial risk management is still based on the assumption of constant market conditions.
Currently, neither “stressed” market phases nor potential bubbles are determined in an objective way.
Machine learning procedures, however, enable a grouping according to risk aspects and a classification of the current market situation.
RiskDataScience has already developed procedures to identify market phases.
Market regimes can be determined on the basis of flexible criteria for historical time series. The current market conditions can be assigned to the respective phases. Thus, it is possible to determine if the current situation corresponds to past stress or bubble phases. In addition, historic stress scenarios can be detected in a systematic way.

Market Phases

In contrast to the efficient market theory, markets are characterized by exaggerations and panic situations (new economy, real estate bubbles,…).
Crises exhibit their own rules – like increased correlations – and behave differently from “normal” phases. In the curse of the crises since 2007/2008, the situation has changed dramatically several times (negative interest rates, quantitative easing,…).

Regulators have realized that market situations can differ in a significant way and require the consideration of stressed market phases e.g. in the

  • determination of “stressed VaR” periods
  • definition of relevant stress scenarios

In the conventional market risk management of financial institutions, however, still only uniform market conditions are considered (e.g. in conventional Monte Carlo simulations).
Historic simulations implicitly consider market phases, but they don’t provide assertions which pase applies to specific situations.
Finally, models like GARCH or ARIMA could’t establish themselves outside academic research.

The neglection of market phases implies several problems and risks.
First, a non-objective determination of stressed market phases for regulatory issues can lead to remarks and findings by internal and external auditors. Thus, eventually sensible capital relief can be denied since a less conservative approach can’t be justified in an objective way.
Also, ignoring possibly dangerous current market situations increases the risk of losses by market price fluctuations. In addition, bubbles are not detected in a timely manner and the “rules” of crises (like increased correlations) are not considered in an appropriate way.
On the other hand, a too cautious approach may result in missed opportunities.

Machine Learning Approaches

For the analysis of the relevant market data, several data science / machine learning algorithms can be considered and implemented with tools like Python, R, Weka or RapidMiner. Here, the following groups of algorithms can be discerned:

  • Unsupervised learning algorithms: These algorithms can be used for the determination of “natural” clusters and the grouping of market data according to predefined similarity criteria. This requires appropriate algorithms like kmeans or DBSCAN as well as economic and financial domain expertise. Also, outlier algorithms can be used to detect anomalous market situations, e.g. as basis for stress test scenarios.
  • Supervised learning algorithms: The algorithms (e.g. Naive Bayes) are “trained” with known data sets to classify market situations. Then, new data – and especially the current situation – can be assigned to the market phases.

For a risk-oriented analysis, market data differences (e.g. in the case of interest rates) or returns (e.g. in the case of stock prices) must be calculated from the market data time series as a basis for the further analysis. Further, a “windowing” must be conducted, viz. the relevant values of the previous days must be considered as additional variables.

Use Case: Analysis of Illustrative Market Data

The analysis described below was based on a market data set consisting of the DAX 30 index, the EURIBOR 3M interest rate, and the EURUSD FX rate. The time period was end of 2000 till end of 2016. For the calculations, consistenly daily closing prices were used as basis for the return (DAX 30, EURUSD) and difference calculations (EURIBOR 3M). Eventual structural breaches were adjusted and missing return values were replaced by zeros. The windowing extended to the last 20 days.

Time series of analyzed market data

The data set was analyzed with the clustering algorithms kmeans and DBSCAN. As a result, most points in time could be assigned to a large “normal cluster”. The rest of the data points fell into a smaller “crisis” cluster.
Since – as it was observed – crisis phases often precede “real” crashes, the procedure could be helpful as “bubble detector”.

Identified market phases

The main identified outliers were the

  • spring of 2001: Burst of the dotcom bubble
  • autumn 2001: September 11
  • autumn 2008: Lehman insolvency
    The current time period is not classified as crisis, the extraordinary situation of negative interest rates counsels caution, however.

Based on a training set of 3,000 points of time, the classification algorithms were trained and applied on a test set of 1,000 points.
An appropriate simple algorithm was Naive Bayes; with this algorithm accuracies of over 90% were reached in in-sample as well as out-of-sample tests.

Hence, an efficiend distinguishing of market phases is already realized and a usage as bubble detector possible after economically and financially sound validations.

 

The methods can be enhanced to capture more complex cases and issues, e.g. for specialized markets like the electricity market as well as patterns and rules characteristic for the high-frequency trading (HFT).

We are developing respective methods and tools and support our customers in obtaining an overall perspective of the data in use.

Contact

Dr. Dimitrios Geromichalos
Founder / CEO
RiskDataScience UG (haftungsbeschränkt)
Theresienhöhe 28, 80339 München
E-Mail: riskdatascience@web.de
Telefon: +4989244407277, Fax: +4989244407001
Twitter: @riskdatascience

Gruppierung und Klassifikation geografischer Adressen

Übersicht Problemstellung und Angebot

Aus der Analyse geografischer Koordinaten können in vielfacher Hinsicht wertvolle Einsichten gewonnen werden. So ist bei der Bewertung und dem Vergleich von Immobilien insbesondere die räumliche Lage ein entscheidendes Kriterium. Lagekoordinaten können darüber hinaus wichtige Zusatzinformationen für verschiedenste Risikobewertungen und Marketinganalysen liefern.
Bei sehr vielen Adressen sind die tatsächlichen räumlichen Standorte und ihre Abstände voneinander jedoch nicht unmittelbar ersichtlich. Das (manuelle) Eintragen in Karten gestaltet sich aufwendig und führt zu keinen weiteren quantitativen Erkenntnissen.
RiskDataScience verfügt über Methoden zur effizienten Ermittlung geografischer Koordinaten und deren Auswertung mittels Machine Learning-Verfahren.
Die geografischen Positionen der zu analysierenden Objekte können unmittelbar als Grafik dargestellt werden. Klassifikations-Algorithmen können erkennen inwiefern sich die Lage auf Objektkriterien wie Preis, Qualität, Risiko usw. auswirkt. Gruppierungs-Algorithmen können Cluster und räumliche Konzentrationen gleichartiger Objekte erkennen und lokale Ausreißer identifizieren.

Anwendungsbeispiel

Zunächst wurden die Adressen und Stern-Anzahlen von insgesamt 190 Münchner Hotels ermittelt.
Die Hotels wurden in die Kategorien „günstig“ (2 und 3 Sterne) und „gehoben“ (4 und 5 Sterne) eingeteilt.
Mittels R Studio wurden automatisch Google-Routinen zur Ermittlung der Koordinaten aus den Adressen aufgerufen.

Geo-Koordinaten 2-/3-Sterne Hotels (rot) und 4-/5-Sterne-Hotels (blau)

Die Koordinaten wurden in RapidMiner importiert und dort weiter ausgewertet.

Dabei wurden zunächst Insample-Tests zur Klassifikation der Kategorien „günstig“ und „gehoben“ durchgeführt.
Die besten Resultate lieferte ein Ensemble-Modell. Die Accuracy konnte allerding nicht auf mehr als 63% gesteigert werden, weswegen nur von einem schwachen Einfluss des Ortes auf die Stern-Anzahl auszugehen ist.

Bei der Gruppierung der Hotels wurden 4 deutliche Cluster im Stadtzentrum identifiziert. Der größte Cluster „1“ (Bahnhofsnähe) beinhaltet dabei 54 und damit 28% der betrachteten Münchner Hotels.

Hotel-Cluster

Insgesamt lässt sich damit selbst für dieses einfache Bespiel auf quantitative Weise der Schluss ziehen, dass es in München einerseits keine ausgeprägte räumliche Trennung günstiger und gehobener Hotels gibt und andererseits deutliche Hotel-Konzentrationen im Stadtzentrum vorhanden sind.

Angebotsstufen für eine Nutzung der Tools zur Analyse geografischer Koordinaten

RiskDataScience ermöglicht Kunden die beschriebenen Verfahren effizient und unternehmensspezifisch einzusetzen und weiterzuentwickeln. Entsprechend den jeweiligen Anforderungen werden dazu folgende zwei Ausbaustufen vorgeschlagen.

Stufe 1: Methodik

  • Einweisung in Methoden zur effizienten Ermittlung geografischer Koordinaten mittels der kostenfreien Software R Studio und Google (2.500 Adressen/Tag)
  • Einweisung in Klassifikations- und Gruppierungs-Verfahren mittels der kostenfreien Software RapidMiner (Version 5.3)
  • Übergabe und Installation der vorhandenen R Studio- und RapidMiner-Lösungen inklusive dokumentierter Arbeitsschritte zur Datenbereinigung
  • Übergabe und Dokumentation der Visualisierungs- und Auswertetechniken
    Kunde ist in der Lage Methodik eigenständig zu verwenden und weiterzuentwickeln

Stufe 2: IT-Lösung

  • Stufe 1 und  zusätzlich
  • Spezifikation aller Anforderungen für eine automatisierte, ggf. webbasierte IT-Lösung
  • Vorschlag und Kontaktierung möglicher Anbieter
  • Unterstützung bei der Anbieter- und Tool-Auswahl
  • Unterstützung bei der Planung der Umsetzung
  • Fachliche und koordinative Begleitung des Umsetzungsprojekts
  • Fachlicher Support nach Implementierung der IT-Lösung
    Kunde verfügt über automatisierte IT-Lösung zur Ermittlung geografischer Koordinaten aus Adressen sowie der automatischen Klassifikation und Gruppierung der Adressen nach örtlichen Gesichtspunkten

Je nach Kundenwunsch ist eine flexible Ausgestaltung möglich. Gerne erläutern wir unseren Ansatz auch im Rahmen eines Vorab-Workshops.

Kontakt

Dr. Dimitrios Geromichalos
Founder / CEO
RiskDataScience UG (haftungsbeschränkt)
Theresienhöhe 28, 80339 München
E-Mail: riskdatascience@web.de
Telefon: +4989244407277, Fax: +4989244407001
Twitter: @riskdatascience

Machine Learning-basierte Newsticker-Priorisierung

Übersicht Problemstellung und Angebot

In den Handelsabteilungen von Finanzinstituten müssen oft weitreichende Entscheidungen in sehr kurzer Zeit getroffen werden. Aufgrund der enormen Anzahl verschiedener Wertpapiere, Derivate, Marktdaten und Nachrichten ist das Priorisieren und Einstufen der Informationen komplex und zeitaufwendig.

Machine Learning-Verfahren ermöglichen das automatische selektieren und priorisieren auch unstrukturierter Informationen wie Textnachrichten RiskDataScience verfügt über bereits entwickelte Algorithmen zur automatischen Klassifizierung von Nachrichten-Texten hinsichtlich Kurs-Relevanz.

Händler können aus einer Vielzahl unterschiedlicher Nachrichten zeitnah die wichtigen herausfiltern. Damit wird sowohl die Informationsbasis vergrößert als auch wertvolle Zeit eingespart.

Handelsrelevante Nachrichten

Allgemeines

In den Handelsabteilungen von Banken und Asset Managern werden weitreichende Entscheidungen bzgl. des Erwerbs oder Verkaufs von Assets und Derivaten getroffen.
Insbesondere im Wertpapierbereich ist es dabei aufgrund permanenter Marktschwankungen essentiell Entscheidungen zügig zu treffen.
Andererseits weisen die Finanzmärkte eine hohe Komplexität und ein hohes Risiko auf. Dies erfordert eine valide Berücksichtigung verschiedenster Informationen unter strategischen, Bewertungs- und Risiko-Aspekten.

Die gängigste Informationsquelle sind Marktdaten wie Aktien-, FX-, CS-Kurse, Zinsen und Rohstoffpreise. Daneben liegen unstrukturierte Daten zumeist in Form von Textnachrichten vor, die (im Ggs. zu den Marktdaten) für gewöhnlich noch keine Einschätzung des Marktes widerspiegeln.
Insbesondere in illiquiden Märkten sind Nachrichten oft viel aussagekräftiger und aktueller als Marktdaten. Nachrichten von Reuters oder Bloomberg liegen hierbei in standardisierter und einfach zu analysierender Form vor.

Effiziente Priorisierung und Einstufung

Für eine zeitnahe und angemessene Berücksichtigung der relevanten Informationen müssen Händler

  • Informationsquellen ermitteln, die für die jeweiligen Daten relevant sind.
  • Die tatsächlich wichtigen Informationen herausfiltern.
  • Die Informationen beurteilen und darauf aufbauend Entscheidungen treffen.

Insbesondere das manuelle Herausfiltern von Textnachrichten erweist sich hierbei als sehr zeitaufwendig, fehleranfällig und subjektiv.

Eine automatisierte Priorisierung von Nachrichten gemäß ihrer Wichtigkeit führt hingegen zu einer großen Zeitersparnis. Wichtige Nachrichten können damit in einer vorgegebenen Zeit effektiver und objektiver erkannt werden und Händler können sich auf Handelsstrategien fokussieren und werden zudem mit geeigneteren Informationen versorgt.

Priorisierung mittels Machine Learning-Verfahren

Methoden und Tools

Für die Nachrichten-Analyse kommen verschiedene Text Mining-Methoden aus dem Bereich Data Science / Machine Learning in Betracht. Die hierfür relevanten Supervised Learning-Algorithmen werden wie folgt eingesetzt:

  • Die Algorithmen werden mit bekannten Datensätzen darauf „trainiert“ Texte den jeweiligen Kategorien (z.B. wichtige Nachricht – unwichtige Nachricht) zuzuordnen.
  • „Unbekannte“ Texte können bekannten Kategorien mit bestimmten Konfidenzen zugeordnet werden.
  • Die Güte der Klassifikation wird mittels spezifischer Kennzahlen und Validierungsverfahren wie der Accuracy (Trefferquote), der Area Under the Curve (AUC; Plot Anteil True Positives über Anteil False Positives) oder Lift-Kurven (Pareto-Plot; Effektivitätstest mittels Vergleich mit Zufallsauswahl) überprüft.

Die Analysen erfordern Programme auf der Basis entsprechender Analysetools, wie z.B. R oder RapidMiner.

Analyse-Vorbereitung

Zunächst muss die Kategorisierung der Trainings-Nachrichten gemäß ihrer Wichtigkeit wie folgt durchgeführt werden:

  • Die Unternehmens-Nachrichten werden den jeweiligen Marktwertänderungen (z.B. Aktien-Returns) zugeordnet
  • Die Nachrichten werden anhand dieser Änderungen nach fachlichen Kriterien den Kategorien zugeordnet (z.B. bei Schwankungen größer σ der Kategorie „wichtig“).

Zudem müssen Stopword-Listen, d.h. Listen auszuschliessender missverständlicher oder zu häufig auftretender Begriffe, gebildet werden.

Analyse-Durchführung

Hierbei werden aus den gemäß Stopword-Listen bereinigten Texten Wortstämme gebildet.
Aus den Texten werden anschließend nach informationstheoretischen Kriterien die signifikanten Wörter und Wortkombinationen extrahiert (n-grams).
Die Texte werden dann als Punkte in einem hochdimensionalen Raum mit den n-grams als Dimensionen dargestellt (Term Document Matrix, TDM).
Per Supervised Learning-Algorithmen werden im Anschluss Kriterien zur Trennung der Punktwolken ermittelt.
Die Ergebnisse sind noch mit spezialisierten Verfahren zu validieren.

Angebotsstufen für eine Priorisierung von Handels-Nachrichten mittels Machine Learning-Verfahren

RiskDataScience ermöglicht Kunden die beschriebenen Verfahren effizient und institutsspezifisch einzusetzen und weiterzuentwickeln. Entsprechend den jeweiligen Anforderungen werden dazu folgende drei Ausbaustufen vorgeschlagen.

Stufe 1: Methodik

  • Einweisung in Klassifikationsmethodik von Nachrichtentexten
  • Übergabe und Installation der vorhandenen Lösung zur Tagcloud-Generierung
  • Übergabe und Installation der vorhandenen RapidMiner-Lösung
  • Übergabe und Dokumentation der Visualisierungs- und Auswertetechniken

Kunde ist in der Lage Methodik eigenständig zu verwenden und weiterzuentwickeln.

Stufe 2: Customizing

  • Stufe 1 und zusätzlich
  • Anpassung und ggf. Neuerstellung von Referenzgruppen gemäß Portfolien des Kunden
  • Entwicklung geeigneter Kennzahlen (wie z.B. Volatilitätsmaßen) für die Kategorisierung gemäß Portfolien und Handelsstrategie des Kunden
  • Entwicklung einer Prozessbeschreibung für einen effizienten Einsatz
  • Kommunikation und Dokumentation der Ergebnisse an alle Stakeholder

Kunde verfügt über gecustomizte Verfahren und Prozesse zur Analyse von Nachrichtentexten.

Stufe 3: IT-Lösung

  • Stufe 1, Stufe 2 und zusätzlich
  • Spezifikation aller Anforderungen für eine automatisierte, ggf. webbasierte IT-Lösung
  • Vorschlag und Kontaktierung möglicher Anbieter und Unterstützung bei der Anbieter- und Tool-Auswahl
  • Unterstützung bei der Planung der Umsetzung sowie fachliche und koordinative Begleitung des Umsetzungsprojekts
  • Fachlicher Support nach Implementierung der IT-Lösung

Kunde verfügt über automatisierte IT-Lösung zur Priorisierung von Nachrichten in Echtzeit.

Je nach Kundenwunsch ist eine flexible Ausgestaltung möglich. Gerne erläutern wir unseren Ansatz auch im Rahmen eines Vorab-Workshops.

Kontakt

Dr. Dimitrios Geromichalos
Founder / CEO
RiskDataScience UG (haftungsbeschränkt)
Theresienhöhe 28, 80339 München
E-Mail: riskdatascience@web.de
Telefon: +4989244407277, Fax: +4989244407001
Twitter: @riskdatascience

Machine Learning-basiertes Kreditrating-Frühwarnsystem

Übersicht Problemstellung und Angebot

Als wichtige Risikoart werden Kreditrisiken mit anspruchsvollen Rating-Verfahren quantifiziert. Aufgrund der aufwendigen Erstellung und fehlender aktueller Bilanzdaten liegen Ratings jedoch nur zeitverzögert vor. Für aktuelle Kreditrisikosignale wurden von Banken daher bereits marktdaten-basierte Frühwarnsysteme eingeführt, die aber keine Indikationen im Falle fehlender Marktdaten liefern können.
Andererseits liefern im Internet vorhandene Unternehmensnachrichten oft wichtige Informationen über Probleme und Schieflagen (siehe auch Nachrichtenbasierte Frühwarnsysteme).
RiskDataScience verfügt über bereits entwickelte Algorithmen zur automatischen Ermittlung und Klassifizierung von Nachrichten-Texten hinsichtlich Insolvenz-Relevanz (News-Based Early Warning).
Damit können Banken aus Nachrichtentexten wertvolle Zusatz-Informationen über drohende Insolvenzen gewinnen. Eine Früherkennung von Kreditrisiken ist damit auch für nichtgelistete Unternehmen ohne direkte Marktdaten möglich.

Kreditrisiko-Messung

Allgemeines

Unter Kreditrisiken versteht man Risiken durch Kreditereignisse, wie Zahlungsausfall, Zahlungsverzug, Herabstufung der Kreditwürdigkeit oder Einfrierung der Währung.
Eine weitere Unterscheidung betrifft die Einteilung in Emittenten- (bei Anleihen), Kontrahenten- (bei Derivate-Geschäften) und – die im Folgenden betrachteten – Kreditausfallrisiken von Kreditnehmern i.e.S.
Kreditrisiken bilden oft das größte Bank-Risiko und müssen – neben Markt- und operationellen Risiken – gemäß Basel II/III mit Eigenkapital unterlegt werden.

Eine häufig herangezogene Kennzahl zur Quantifizierung  von Kreditrisiken ist der erwartete Verlust (Expected Loss) eines Kredits. Dieser ergibt sich im einfachsten Fall als Produkt aus

  • PD: Probability of Default, Ausfall-Wahrscheinlichkeit
  • LGD: Loss Given Default, eins minus Wiederverwertungsrate
  • EaD: Exposure at Default, ausstehendes Kreditvolumen

Externe und interne Kreditratings messen hauptsächlich die PD (und z.T. den LGD) und werden mit aufwendigen Verfahren ermittelt.

Ermittlung und Früherkennung

Die Verfahren zur Ermittlung der PD erfordern fundierte statistische Analysen auf Basis von

  • quantitativen Bilanzkennzahlen wie Verschuldungsgrad, Eigenkapitalquote und EBIT
  • qualitativen Analysten-Kennzahlen wie Qualität des Managements, Zukunftsaussichten und Marktstellung
  • allgemeinen Marktdaten wie Zinsen, Inflation und Wechselkursen.

Die Ratingmodelle müssen regelmäßig anhand tatsächlicher Kreditereignisse validiert und gegebenenfalls angepasst werden.
Kreditratings liegen deshalb meist verzögert – oftmals nur jährlich – vor.
Zur Behebung dieses Problems wurden marktdatenbasierte Frühwarnsysteme eingeführt, die Signale auf der Basis signifikanter Änderungen von Aktienkursen, Credit Spreads oder weiterer mit dem Rating korrelierter Marktdaten liefern. Im Allgemeinen können damit allerdings nur systematische bzw. Risiken gelisteter Unternehmen erkannt werden.

Informationen aus Nachrichten

Allgemeines

Die Gründe für Insolvenzen sind oft unternehmensspezifisch (idiosynkratisch) und können nicht aus allgemeinen Marktentwicklungen abgeleitet werden. Beispiele hierfür sind

  • Betrugsfälle durch das Management
  • Insolvenz eines wichtigen Kunden bzw. Lieferanten
  • Auftreten eines neuen Konkurrenten

Negative Ereignisse wie Werkschließungen, Kurzarbeit, Ermittlungen und Anklagen gehen dabei der eigentlichen Insolvenz zum Teil um mehrere Monate voraus.

Im Falle nichtgelisteter Unternehmen ist dennoch keine marktdatenbasierte Frühwarnung möglich. Hingegen liefern Nachrichten auch in diesen Fällen aktuelle und oftmals insolvenzrelevante Informationen.
Nachrichtenportale, Blogs, Soziale Medien und insbesondere Lokalzeitungen informieren dabei online über Probleme von Unternehmen.
Durch die effiziente Nutzung von Online-Texten ist somit eine Erweiterung der Frühwarnung auf nichtgelistete Unternehmen möglich.

Effiziente Nachrichten-Analyse

Verfahren zur effizienten Analyse von Online-Texten sind Voraussetzung um die relevanten Nachrichten zu identifizieren und darauf aufbauend mögliche Insolvenzen zu antizipieren. Hierfür notwendig sind

  • eine rechtzeitige Identifizierung hunderter Datenquellen (Websites, RSS-Feeds, etc.)
  • ein Crawlen der relevanten Nachrichten zu allen Kunden anhand vorgegebener Muss- und Ausschlusskriterien
  • eine zeitnahe Klassifikation der relevanten Texte anhand möglicher Insolvenzrisiken
  • eine sofortige Analyse und Visualisierung der Ergebnisse zur Erkennung von Risiken

Bereits realisierte Machine Learning-Algorithmen dienen als Basis für diese zunächst unmöglich erscheinende Aufgabe.

Wissensnutzung durch Machine Learning-Verfahren

Crawlen

Im ersten Schritt müssen alle relevanten Nachrichtenquellen (z.B. Online-Zeitungen) anhand einer hinreichend großen Stichprobe zu untersuchender Unternehmen identifiziert und irrelevante Quellen möglichst ausgeschlossen werden.
Die Gewinnung der relevanten Texte aus diesen Quellen kann über folgende Verfahren erfolgen

  • Suchabfragen per Crawler (z.B. Google, Bing oder Bank-Eigenentwicklung) anhand vorgegebener Kriterien
  • direktes Abgreifen der Nachrichten per RSS-Feeds

Die Nachrichten sind dabei nach Relevanz zu filtern. Zur Vermeidung von Verwechslungen aufgrund des Namens oder irrtümlicher Textbausteine (z.B. bzgl. Aktien) sind Wortfilter und ggf. komplexe Textanalysen notwendig.

Klassifikation

Für die Klassifizierung der gewonnenen Nachrichtentexte kommen verschiedene Text Mining-Methoden aus dem Bereich Data Science / Machine Learning in Betracht. Beim Supervised Learning wird dabei wie folgt vorgegangen

  • zunächst werden manuell die Wörter ermittelt, die für die Klassifikation irrelevant sind („Stopwords“)
  • die Algorithmen werden dann mit bekannten Datensätzen darauf „trainiert“ Texte Kategorien zuzuordnen
  • neue Texte können anschließend bekannten Kategorien mit bestimmten Konfidenzen zugeordnet werden

Methodisch sind dabei folgende Schritte durchzuführen

  • aus den gefilterten Texten werden signifikante Wortstämme/Wortstamm-Kombinationen („n-grams“) ermittelt
  • die Texte werden als Punkte in einem hochdimensionalen Raum (mit den n-grams als Dimensionen) abgebildet
  • Machine Learning-Verfahren ermitteln Gesetzmäßigkeiten zur Trennung der Punkte nach Kategorien. Hierfür bieten sich dezidierte Algorithmen wie naive Bayes, W-Logistic oder Support Vector Machine an.

Die Analysen erfordern Programme auf der Basis entsprechender Analysetools, wie z.B. R oder RapidMiner.

Anwendungsbeispiel

Für ca. 50 insolvent gegangene Unternehmen und 50 nicht-insolvente Referenzunternehmen wurden Google News-Nachrichtentexte für einen mehrmonatigen Zeithorizont (3M–3W) vor der jeweiligen Insolvenz gesammelt.
Die dargestellten Tagclouds geben einen exemplarischen Überblick über den Inhalt der Texte.
Mit einem RapidMiner-Prototypen wurden die Nachrichtentexte hinsichtlich möglicher Insolvenzen klassifiziert und die Resultate mit In- und Out-Of-Sample-Tests untersucht.

Tagcloud Nachrichten insolvent gegangene Unternehmen
Tagcloud Nachrichten nicht insolvent gegangene Unternehmen

Bereits anhand der Tagclouds ist somit ein deutlicher Unterschied zwischen den Nachrichten zu insolvent gegangenen  und nicht insolvent gegangenen Unternehmen erkennbar.

Die RapidMiner-Lösung wurde mit einem Trainingssample (70% der Texte) trainiert und auf einem Test-sample (30% der Texte) angewendet.
Sowohl für das Trainingssample (In-Sample) als auch für das Testsample ergaben sich dabei Trefferquoten (Accuracy) von ca. 80%. Die Area Under the Curve (AUC) lag zudem im In-Sample-Fall bei 90%.
Anhand der RapidMiner-Konfidenzen und den tatsächlichen Insolvenzen konnte zudem eine PD-Kalibrierung durchgeführt werden.

Selbst mit dem relativ kleinen Trainingssample konnte damit eine signifikante Früherkennung von Insolvenzen erreicht werden. Weitere Verbesserungen sind mit einer Erweiterung der Trainingsdaten zu erwarten.

Kosteneffiziente Umsetzung

Ausgangslage

Da sich noch kein einheitlicher Markt für Internet-Nachrichten-Lieferungen gebildet hat, sind die Preise oft uneinheitlich. Unterschiedliche Anforderungen an die Bereinigungsroutinen und unterschiedliche technische Ansätze führen zu großen Preisspannen.
Hingegen sind qualitativ hochwertige Analyse-Tools wie  R oder RapidMiner (Version 5.3) z.T. sogar frei erhältlich.
Zudem bietet ca. die Hälfte aller Online-Zeitungen ihre Schlagzeilen in Form standardisierter RSS-Feeds an.

Kostentreiber

Die Umsetzungs- sowie die laufenden Kosten von nachrichtenbasierten Frühwarnsystemen können sich insbesondere aus den folgenden Gründen z.T. deutlich erhöhen:

  • Eine Auswertung vollständiger Nachrichtentexte erfordert aus Urheberrechtsgründen Gebühren an Verwertungsgesellschaften (VG Wort) bzw. einen direkten Kauf.
  • Ein Crawling beliebiger Quellen ist technisch aufwendig.
  • Die Pflege fortschrittlicher NLP-Algorithmen (Natural Language Processing) zur Identifizierung relevanter Texte ist kostenintensiv.

Es ist daher zu prüfen, inwiefern die genannten Punkte – zumindest für eine Basis-Umsetzung – tatsächlich notwendig sind.

Kosteneffiziente Basis-Lösung

Der bereits entwickelten kosteneffizienten RiskDataScience Basis-Lösung liegen folgende Annahmen zugrunde

  • in den Überschriften sowie kurzen Textausschnitten (“Snippets“) enthaltene Informationen sind für Insolvenzwarnungen ausreichend
  • es liegen genügend freie RSS-Feeds vor, die eine hinreichend gute Übersicht über die Lage (mittelständischer) Unternehmen bieten
  • die Relevanz der Nachrichten-Snippets kann anhand einfacher Text-Suchen ermittelt werden

Die realisierte Lösung basiert auf folgenden – im Batch-Modus lauffähigen – Komponenten

  • Datenbank, die hunderte RSS-Links zu Wirtschafts- und Regional-Nachrichten enthält und ca. 50% der deutsch-sprachigen Online-Zeitungen abdeckt
  • Lösung auf RapidMiner-Basis zum Einlesen beliebig vieler RSS-Feeds in ein Excel-Format
  • VBA-Routinen zum Herausfiltern relevanter Snippets mittels Texterkennung

Damit können jederzeit innerhalb weniger Minuten hunderte Nachrichtenquellen durchsucht und Insolvenzsignale zu potentiell tausenden Unternehmen identifiziert werden.

Urheberrechtliche Fragestellungen

Bei einer Realisierung nachrichtenbasierter Frühwarnsysteme müssen zwingend die rechtlichen Vorgaben beachtet werden, die sich insbesondere aus dem Urheberrecht (UrhG) ergeben.

Dieses setzt der Vervielfältigung und Bearbeitung von Nachrichten-Texten enge Grenzen.
Insbesondere im Falle von Datenbanken sowie Weiter-Veröffentlichungen können Probleme auftreten.

Demgegenüber stehen zahlreiche Ausnahmen, insbesondere in Bezug auf vorübergehende Vervielfältigungshandlungen sowie Zeitungsartikel und Rundfunkkommentare.

Obwohl die Verarbeitung von Nachrichten-Snippets i.A. unbedenklich ist, wird aufgrund der hohen Komplexität des UrhG zur Absicherung anwaltlicher Rat empfohlen.

Angebotsstufen für einen Einsatz von Machine Learning-Verfahren zur Kreditrisiko-Füherkennung

RiskDataScience ermöglicht Banken die beschriebenen Verfahren effizient und institutsspezifisch einzusetzen und weiterzuentwickeln. Entsprechend den jeweiligen Anforderungen werden dazu folgende drei Ausbaustufen vorgeschlagen.

Stufe 1: Methodik

  • Einweisung in Text-Klassifikationsmethodik
  • Übergabe und Installation der vorhandenen Lösung zur Tagcloud-Generierung
  • Übergabe und Installation der vorhandenen RapidMiner-Lösung
  • Übergabe und Dokumentation der Visualisierungs- und Auswertetechniken
    Bank ist in der Lage Methodik eigenständig zu verwenden und weiterzuentwickeln

Stufe 2: Customizing

  • Stufe 1 und zusätzlich
  • Anpassung und ggf. Neuerstellung von Referenzgruppen gemäß Portfolien der jeweiligen Bank
  • Durchführung von Analysen und Methodenoptimierung anhand der Portfolien und Kundenhistorie der Bank
  • Anpassung der RSS-Quellen
    Entwicklung einer Prozessbeschreibung für einen effizienten Einsatz
  • Kommunikation und Dokumentation der Ergebnisse an alle Stakeholder
    Kunde verfügt über gecustomizte Verfahren und Prozesse zur Analyse von Nachrichtentexten

Stufe 3: IT-Lösung

  • Stufe 1, Stufe 2 und zusätzlich
  • Spezifikation aller Anforderungen für eine automatisierte, ggf. webbasierte IT-Lösung
  • Vorschlag und Kontaktierung möglicher Anbieter
  • Unterstützung bei der Anbieter- und Tool-Auswahl
  • Unterstützung bei der Planung der Umsetzung
  • Fachliche und koordinative Begleitung des Umsetzungsprojekts
  • Fachlicher Support nach Implementierung der IT-Lösung
    Bank verfügt über automatisierte IT-Lösung zur nachrichtenbasierten Früherkennung von Insolvenzsignalen.

Je nach Kundenwunsch ist eine flexible Ausgestaltung möglich. Gerne erläutern wir unseren Ansatz auch im Rahmen eines Vorab-Workshops.

Kontakt

Dr. Dimitrios Geromichalos
Founder / CEO
RiskDataScience UG (haftungsbeschränkt)
Theresienhöhe 28, 80339 München
E-Mail: riskdatascience@web.de
Telefon: +4989244407277, Fax: +4989244407001
Twitter: @riskdatascience

Machine Learning-basierte Einstufung und Klassifikation regulatorischer Anforderungen

Übersicht Problemstellung und Angebot

Die im Zuge der Finanzkrise ab 2007 beschlossenen Regularien stellen Banken vor kaum zu bewältigende Herausforderungen. Gleichzeitig stehen den Banken beträchtliche Wissensressourcen zur Verfügung, die für die Bewältigung der Aufgaben genutzt werden können, aufgrund ihres Umfangs und ihrer Komplexität jedoch sehr aufwendige Analysen erfordern. Machine Learning-Verfahren ermöglichen die Nutzung der vorhandenen Wissensressourcen mit einer bisher nicht dagewesenen Effizienz und Effektivität.
RiskDataScience verfügt diesbezüglich über bereits entwickelte Kategorien und Algorithmen zur Klassifizierung und Gruppierung von Texten mit regulatorischem Bezug. Der regulatorische Einsatz von Machine Learning-Verfahren kann hierbei flexibel ausgestaltet werden.
Damit können Zusammenhänge zwischen den Regularien erkannt, Stakeholder, Verfahren und Projektabhängigkeiten frühzeitig identifiziert und Probleme antizipiert und vermieden werden. Banken können zudem Projektkosten senken und Planungen optimieren. Außerdem wird eine zeitnahe Einstufung der Auswirkungen erleichtert.

Regulatorische Herausforderungen

Regularien wie IFRS 9, BCBS 239, FTRB, IRRBB oder die MaRisk-Novelle 2016 erfordern grundlegende Änderungen in den Methoden, Prozessen und/oder Systemen der Banken. Viele Regularien haben zudem weitreichende Auswirkungen auf die Risiken, das Eigenkapital und damit das Geschäftsmodell der betroffenen Banken. Die große Anzahl der finalen bzw. in Konsultation befindlichen Regularien gestaltet ein angemessenes Monitoring der Anforderungen und Auswirkungen schwierig.

Weitere Komplikationen ergeben sich aus der Interaktion der Anforderungen. Die Regularien können verschiedene, miteinander zusammenhängende, Bereiche der Banken, wie Risk, Handel, Finance oder die IT betreffen. Bereits laufende Projekte (inklusive der Projektziele) können ebenfalls von Regularien betroffen sein und müssen ggf. angepasst werden. Bei regulatorischen Umsetzungsprojekten kann es daher zu zeitlichen und inhaltlichen Abhängigkeiten sowie Zielkonflikten zwischen den Projekten kommen.

Dementsprechend finden in den Banken unzählige Vorstudien und Umsetzungsprojekte statt. Zahlreiche Beratungsunternehmen führen hierbei Projekte durch, die sich oft durch lange Laufzeiten und einen hohen Ressourcenbedarf auszeichnen. Die Projekte binden außerdem interne Ressourcen und verschärfen bereits vorhandene Personalengpässe.
Generell ist die externe Unterstützung kostspielig und erhöht den Koordinationsaufwand, insbesondere bei mehreren Dienstleistern. Fehler in Vorstudien und Projekt-Anfangsphasen lassen sich zudem nur schwer korrigieren. Aufgrund der hohen Projekt-Komplexität besteht schließlich das Risiko, dass Auswirkungen und Interdependenzen nicht rechtzeitig erkannt werden.

Wissensressourcen zur Aufgabenbewältigung

Als externe Ressourcen stehen den Banken zunächst Originaltexte der Regularien sowie der Konsultationen zur Verfügung, die für gewöhnlich frei erhältlich sind. Zahlreiche einschlägige Online-Portale veröffentlichen regelmäßig Artikel über Inhalt und Auswirkungen der regulatorischen Anforderungen. Verschiedene Beratungsunternehmen, insbesondere die Big 4, stellen den Banken außerdem freie Artikel, Whitepapers und Newsletters zur Verfügung. Somit kann dann Internet in gewissem Umfang bereits als Medium für Vorab-Analysen aufgefasst werden.

Intern haben die Banken bereits umfangreiche Erfahrungen durch bereits abgeschlossene oder aktuell laufende Projekte gesammelt, wie Projektdokumentationen oder Lessons Learned. Banken verfügen zusätzlich über umfangreiche Dokumentationen der eingesetzten Methoden, Prozesse und Systeme sowie der Zuständigkeiten und organisatorischen Gegebenheiten. Interne Blogs, etc. bündeln darüber hinaus die Expertise der Mitarbeiter. Teil-Analysen sind damit bereits in beträchtlichem Umfang vorhanden.

Wissensnutzung durch Machine Learning-Verfahren

Methoden und Tools

Für die Analyse der regulatorischen sowie der sich hierauf beziehenden Texte kommen verschiedene Text Mining-Methoden aus dem Bereich Data Science / Machine Learning in Betracht, die sich in folgende Kategorien einteilen lassen.

  • Supervised Learning: Die Algorithmen werden mit bekannten Datensätzen darauf „trainiert“ Texte den jeweiligen Regularien zuzuordnen. „Unbekannte“ Texte können anschließend bekannten Regularien mit bestimmten Konfidenzen zugeordnet werden. Diese Verfahren eignen sich insbesondere zur Zuordnung neuer Texte zu bereits bekannten Regularien sowie zur Identifizierung von Ähnlichkeits-Kriterien (Stopword-Listen, s.u.).
  • Unsupervised Learning: Hierbei werden „natürliche“ Cluster gebildet, die Regularien können unmittelbar gemäß Ähnlichkeitskriterien gruppiert werden. Neue Regularien können damit mit bereits bekannten verglichen werden.

Die Analysen erfordern Programme auf der Basis entsprechender Analysetools, wie z.B. R oder RapidMiner.

Mining-Vorbereitung

Der erste Schritt ist die Bildung von Ähnlichkeits-Kategorien anhand derer Ähnlichkeiten und Zusammenhänge festgestellt werden sollen. Mögliche Kategorien sind z.B. Risikobezug, Auswirkung auf Kapital, Organisations-Aspekte oder Zielgruppen. Die Bildung der Kategorien sowie der entsprechenden Wortlisten erfordert fundierte fachliche Expertise

Auf Basis der Kategorien sind Wortlisten (bzw. Stopword-Listen, d.h. Ausschlusslisten) zu bilden, anhand derer die Analysen durchgeführt werden sollen. Die eingelesenen und vorverarbeiteten Texte müssen gemäß der zu untersuchenden gefiltert werden.

Mining-Durchführung

Basis für die Mining-Durchführung sind die aus den gefilterten Texten gebildeten Term Document Matrices.
Nach Anpassung der Stopwortlisten können „neue“ Regularien mit bereits bekannten „Backbone-Regularien“ verglichen werden. Die Resultate können dazu verwendet werden die Stopwortlisten weiter zu optimieren und z.B. in Form von Spinnendiagrammen dargestellt werden.
Mit den optimierten Stopwortlisten können anschließend Gruppierungen vorgenommen und in Form von Baumdiagrammen dargestellt werden.

Vorteile einer automatisierten Untersuchung

Kostensenkung

Regulatorische Umsetzungsprojekte sind für Banken einer der größten Kostentreiber. Mit einem Bedarf an mehreren hundert Mitarbeitern können die Kosten im dreistelligen Millionenbereich liegen. Dementsprechend sind die Vorstudien hierzu von großer Bedeutung. Diese beinhalten u.a. die Dokumentklassifikation, Stakeholderermittlung, Relevanzeinstufung, Gap-Analyse und Planung der Umsetzung. Vorstudien sind ihrerseits kostspielig und wirken sich darüber hinaus über die Planung auf die Kosten der Umsetzungsprojekte aus.
Die Kosten automatisierter Analysen sind vergleichsweise marginal. Dennoch können mehrere Aufgaben von Vorstudien, wie die Dokumentklassifikation, die Stakeholderermittlung oder Relevanzeinstufung mit übernommen und optimiert werden.
Damit sinken die Kosten von Vorstudien aufgrund des geringeren Personalbedarfs. Frei werdende Mittel können  effektiver eingesetzt werden, indem z.B. weniger und dafür erfahrene Berater engagiert werden.
Zudem kann die Planung der Umsetzung hinsichtlich möglicherweise irrelevanter Punkte kontrolliert werden.

Fehlerreduktion

Automatische Analysen stellen eine effiziente Zusatzkontrolle dar, die dazu beiträgt Projektrisiken – etwa durch Planungsfehler – zu minimieren.
Nichttriviale – und möglicherweise übersehene – Interdependenzen zwischen Programmen und Projekten können identifiziert und in der Planung berücksichtigt werden.
Ergebnisse von Vorstudien und Aussagen externer Dienstleister können damit eigenständig überprüft werden.

Antizipation

Banken werden mit ständig neuen Konsultationspapieren konfrontiert, zu denen sie Stellung beziehen müssen. Eine rechtzeitige Analyse aller Aspekte ist kostspielig und fehleranfällig.
Automatische Analysen können hingegen per definitionem sehr schnell und standardisiert durchgeführt werden. Damit können Auswirkungen auf das Geschäftsmodell rechtzeitig antizipiert und in die Stellungnahmen einbezogen werden.

Anwendungsbeispiel: Analyse der neuen MaRisk-Novelle 2016

Das im Folgenden beschriebene Anwendungsbeispiel basiert auf einem bereits entwickelten Prototypen (MVP) und extern verfügbaren Daten. Obwohl auch damit bereits die unten skizzierten Einsichten gewonnen werden können, wird der volle Nutzen erst mit der Analyse zusätzlicher bankinterner Texte erreicht.

Allgemeines

Mit einem RapidMiner-Prototypen wurden Ähnlichkeiten zwischen der MaRisk-Novelle 2016 sowie BCBS 239, FRTB, IRRBB, Prudent Valuation und SA-CCR untersucht.
Die Analysen wurden für die von RiskDataScience entwickelten Ähnlichkeitskategorien „Data“ (Datenbezug), „Function“ (Bank-Einheiten), Impact (Auswirkungen auf Projekte und Eigenkapital), Overall (allgemein), Regul (Regulatoren und Zielgruppen) und Risk (Risikoarten und Methoden) durchgeführt.
Die dargestellten Tagclouds geben einen exemplarischen Überblick über den Inhalt einiger Textkorpi.

Tagcloud Textkorpus FRTB

 

Tagcloud Textkorpus MaRisk-Novelle 2016

 

Tagcloud Textkorpus BCBS 239

Bereits anhand der Tagclouds ist somit eine starke Ähnlichkeit zwischen der MaRisk-Novelle 2016 und BCBS 239 (im Gegensatz zu FRTB) ersichtlich.

Textklassifikation

Die RapidMiner-Lösung wurde mit Textkorpi zu den Regularien BCBS 239, Prudent Valuation, IFRS 9, FRTB, IRRBB und SA-CCR trainiert.
Die Texte zur MaRisk-Novelle 2016 wurden als „unbekannt“ angenommen und vom trainierten Algorithmus den jeweiligen „bekannten“ Regularien zugeordnet. Die Visualisierung erfolgte mittels Spinnendiagrammen.

Wie erwartet gibt es in allen Bereichen eine starke Ähnlichkeit zwischen der MaRisk-Novelle 2016 und BCBS 239.

Textclustering

Im Rahmen der Validierung der Textklassifikation wurden die Wortlisten für die Ähnlichkeitskategorien soweit optimiert, bis sie für ein Clustering verwendet werden konnten.
Beim Clustering konnten alle betrachteten Regularien zugleich nach Ähnlichkeiten bzgl. der jeweiligen Kategorie gruppiert werden.
Durch Variation der Cluster-Größe im entsprechenden RapidMiner-Algorithmus wurde eine hierarchische Struktur aufgebaut und als Baumdiagramm visualisiert.

Auch hier gibt es starke Ähnlichkeiten zwischen der MaRisk-Novelle 2016 und BCBS 239.  Weitere starke Ähnlichkeiten existieren zwischen FRTB und IRRBB; IFRS 9 nimmt dagegen oft eine Sonderrolle ein.

Self-Organizing Maps (SOM)

Eine weitere Analyse- und Visualisierungsmöglichkeit ergibt sich mittels Self-Organizing Maps. Hierbei werden die Texte gemäß definierter Kategorien in eine aus Sechsecken bestehende Struktur so, eingeordnet, dass ähnliche Texte benachbart sind. Aufgrund der Vielzahl verschiedener Texte und der Komplexität des Problems nehmen Regularien dabei prinzipiell mehrere Felder ein. Die Farbgebung verdeutlicht zudem die „Einzigartigkeit“ verschiedener Texte.

Kategorie “Overall”

 

Kategorie “Functions”

 

Kategorie “Impact”

Wie erwartet stellt die allgemeine Sicht die MaRisk-Novelle 2016 nahe BCBS 239.  In der Funktionen-Sicht ergeben sich zudem Ähnlichkeiten zwischen FRTB, IRRBB und SA-CCR, die alle von Risk-Abteilungen wahrgenommen werden,  während sich in der Impact-Sicht IFRS 9 und FRTB – mit  Auswirkungen auf die Kapitalisierung – ähneln.

Angebotsstufen für einen regulatorischen Einsatz von Machine Learning-Verfahren

RiskDataScience ermöglicht Banken die beschriebenen Verfahren effizient und institutsspezifisch einzusetzen und weiterzuentwickeln. Entsprechend den jeweiligen Anforderungen werden dazu folgende drei Ausbaustufen vorgeschlagen.

Stufe 1: Methodik

  • Einweisung in Klassifikations- und Gruppierungsmethodik regulato-rischer Texte
  • Übergabe und Installation der vorhandenen Lösung zur Tagcloud-Generierung
  • Übergabe und Installation der vorhandenen RapidMiner-Lösung
  • Übergabe und Dokumentation der Visualisierungs- und Auswertetechniken
    Bank ist in der Lage Methodik eigenständig zu verwenden und weiterzuentwickeln

Stufe 2: Customizing

  • Stufe 1 und zusätzlich
  • Anpassung und ggf. Neuerstellung regulatorischer Ähnlichkeitskategorien gemäß Gegebenheiten der jeweiligen Bank
  • Analyse der konkreten Regularien, Projekte, Methoden, Prozesse und Systeme zur Identifizierung optimaler Einsatzmöglichkeiten
  • Entwicklung einer Prozessbeschreibung für einen effizienten Einsatz
  • Kommunikation und Dokumentation der Ergebnisse an alle Stakeholder
    Bank verfügt über gecustomizte Verfahren und Prozesse zur Analyse regulatorischer Anforderungen

Stufe 3: IT-Lösung

  • Stufe 1, Stufe 2 und zusätzlich
  • Spezifikation aller Anforderungen für eine automatisierte, ggf. webbasierte IT-Lösung
  • Vorschlag und Kontaktierung möglicher Anbieter
  • Unterstützung bei der Anbieter- und Tool-Auswahl
  • Unterstützung bei der Planung der Umsetzung
  • Fachliche und koordinative Begleitung des Umsetzungsprojekts
  • Fachlicher Support nach Implementierung der IT-Lösung
    Bank verfügt über automatisierte IT-Lösung zur effizienten Klassifizierung und Gruppierung regulatorisch relevanter Texte

Je nach Kundenwunsch ist eine flexible Ausgestaltung möglich. Gerne erläutern wir unseren Ansatz auch im Rahmen eines Vorab-Workshops.

Kontakt

Dr. Dimitrios Geromichalos
Founder / CEO
RiskDataScience UG (haftungsbeschränkt)
Theresienhöhe 28, 80339 München
E-Mail: riskdatascience@web.de
Telefon: +4989244407277, Fax: +4989244407001
Twitter: @riskdatascience